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We obtain new properties of general d-dimensional lattice ferromagnetic spin
systems with nearest neighbor interactions in the high-temperature region
(;<<1). Each model is characterized by a single-site a priori spin distribution,
taken to be even. We state our results in terms of the parameter :=(s4) &
3(s2) 2, where (sk) denotes the kth moment of the a priori distribution.
Associated with the model is a lattice quantum field theory which is known to
contain particles. We show that for :>0, ; small, there exists a bound state
with mass below the two-particle threshold. The existence of the bound state has
implications for the decay of correlations, i.e., the 4-point functions decay at a
slower rate than twice that of the 2-point function. These results are obtained
using a lattice version of the Bethe�Salpeter equation. The existence results
generalize to N-component models with rotationally invariant a priori spin dis-
tributions.

KEY WORDS: Transfer matrix spectrum; decay of correlations; bound
states; Gaussian domination inequalities; classical ferromagnetic spin systems.

I. INTRODUCTION AND RESULTS

In this work we obtain new properties of general d-dimensional lattice
ferromagnetic classical spin systems with nearest neighbor interactions in
the high temperature region (;<<1). Each such system is characterized by
a single site a priori spin probability distribution. Associated with these
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systems is a lattice quantum field theory with Hamiltonian energy and
field momentum operators living on a d&1-dimensional sublattice. The
Hamiltonian is minus the logarithm of the transfer matrix (see refs. 1
and 2). The new properties are uncovered by a detailed study of the par-
ticles of this underlying field theory. The idea of studying these systems via
the transfer matrix is not new but up to now it has only been established
that the low-lying energy-momentum (e-m) spectrum consists of a particle
with isolated dispersion curve. These results imply exponential decay of
correlation functions (cf ) and the Ornstein�Zernike behavior of the two-
point cf. refs. 3 and 4. Our results go beyond this giving information on the
spectrum up to the two-particle threshold and have consequences for the
decay of cf 's.

Our basic result can be stated in terms of the quantity :#(s4) &
3(s2)2 where the brackets are moments of the a priori distribution, taken
to be even. We show that if :>0 the dominant interaction (which is local)
is attractive and a bound state exists, such as, there is energy spectrum
below the two-particle threshold. In the Gaussian case which corresponds
to :=0 the particles do not interact. The presence of bound states in the
spectrum imply decay properties of cf 's, for example, the 4-point function
has a slower than two particle decay rate.

The spectral results established here are obtained using a lattice ver-
sion of the Bethe�Salpeter (B�S) equation (which employs a newly devised
set of coordinates suitable for the lattice two-body bound state problem)
and follow the methods used in refs. 5 and 6.

We point out that for a wide class of models cf inequalities have been
established (see refs. 1, 7, and 8) called Gaussian domination inequalities.
These inequalities hold for all temperatures. The class of models is defined
by imposing conditions on the single spin distribution (ssd). For these
models if we set the inverse temperature to zero and take coincident points
then the 4-point inequality corresponds to the ssd condition :�0. Thus for
high temperatures our results complement the Gaussian domination ones.
In addition our bound state results generalize to N-component spin models
(see below) while Gaussian domination inequalities have only been proven
to hold for the scalar and Abelian (N=2) cases.

For the N-component spin models, where si (x) is the i th component
of s(x) # RN and x is a lattice site of Zd, the ssd is taken to be even and
rotationally invariant. :, the parameter for the scalar spin case is replaced
by :N=( (s } s)2)&((N+2)�N)(s } s) 2 and a bound state exists for :N>0.
:N=0 corresponds to the Gausian case. We now turn to a more precise
description of the class of models we treat and of our results. For simplicity
we only consider explicitly the scalar spin case. We let s(x) # R, x=(x0 , x� )
# 4/Zd denote the spin variable at the site x of the finite lattice 4. For

1208 Schor and O'Carroll



the generating function Z4(J ) we take Z4(J )=� e(J, s)eS(s) d+(s); (J, s)=
�x J(x) s(x) and the interacting action S(s) is S(s)=; �$ s(x) s( y) where
�$ denotes the sum over the unordered set of nearest neighbor sites [x, y].
d+(s)=>x e&V(s(x)) ds(x) and we only consider the case of even ssd. i.e.,
V(s)=V(&s). V(s) is bounded from below and increases at infinity at least
quadratically. Expectations of the probability measure exp[S(s)] d+(s)�
normalization are denoted by ( } ) 4 . Truncated cf 's are given by local
derivatives with respect to J 's of ln Z4(J ) at J=0.

By the polymer expansion (see ref. 4) the thermodynamic limit
(4 � Zd ) of the cf 's exist. The limiting cf 's are denoted by ( } ) and are
translation invariant. The truncated cf 's have exponential tree decay.

Associated with the model is an imaginary discrete time lattice quan-
tum field theory (qft). The qft is constructed in the standard way (see refs. 1
and 2). Taking the x0 direction as time the construction provides the quan-
tum mechanical Hilbert space H with inner product ( } , } ), commuting self-
adjoint energy-momentum (em) operators H�0, P9 , the time-zero field
operator ŝ(x), x=(0, x� ) and the vacuum vector 0. The relation of the
Hilbert space objects to the cf 's is given by the Feynman�Kac (F�K) for-
mula, i.e., setting ŝ(0)= ŝ, xk=(tk , x� k), with t1�t2� } } } <<tn ,

(0, ŝe&H(t2&t1)e iP9 } (x2&x� 1)ŝe&H(t3&t2)eiP9 } (x� 3&x� 2)ŝe&H(tn&tn&1)eiP9 } (x� n&x� n&1)ŝ0)

=(s(x1) } } } s(xn))

We will state our main result in terms of the spectrum of H, P9 but first
we give some known or easily obtained results on the e-m spectrum which
we need here. We let (E, p� ), E�0, p� # Td&1 (the d&1-dimensional torus)
denote the spectral parameters associated with (H, P9 ) and refer to the spec-
tral point (E, p� =09 ) as the mass spectrum.

The one-particle states are generated by vectors of the form ŝ(x� ) 0 and
by the methods of ref. 4 have mass mtln ; for ; small and an isolated real
analytic dispersion curve w( p� )�w(09 )#m. The e-m dispersion curve is
determined as the zero of 1� ( p0=iw( p� ), p� ) where 1� ( p) is the Fourier trans-
form of 1 (x, y). Throughout this paper we define the Fourier transform
without factors of 2?. 1 (x, y) is minus the convolution inverse of the two-
point function (s(x) s( y)) =S(x, y). To lowest order in ;

w( p� )=&ln ;&ln(s2) &2;(s2)+;(s2) 2 :
d&1

i=1

(1&cos p i )+0(;2)

Furthermore there is no spectrum up to &(2&=) ln ;, =(;)>0, and
=(;) a 0 as ; a 0. This is known as the upper mass gap property and implies
the Orstein�Zernike behavior for the two-point function (see ref. 3).
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The general representation for S(x)#S(x, 0) can be obtained by
adapting the work of refs. 2 and 4 to give, for ;>0,

S(x)=|
�

0
|

Td&1

e&E |x0 |eip� } x� d_p� (E ) dp�

where

d_p� (E )=Z( p� , ;) $(E&w( p� )) dE+d_̂p� (E )

and d_p� (E ) as well as d_̂p� (E ) are positive measures. Thus S� ( p), the
Fourier transform of S(x), is given by

S� ( p)=(2?)d&1 sinh w( p� , ;) Z( p� , ;)
cosh w( p� , ;)&cos p0

+(2?)d&1 |
�

0

sinh E
cosh E&cos p0

d_̂p� (E )

d_̂p� (E ) has support in (m� , �) where m� =&(3&=$) ln ;, =$ a 0 as ;$ a 0 is a
lower bound for the onset of the three-particle spectrum. Z( p� , ;)=
�1� ( p0=i/, p� )��/ |/=w( p� ) is positive for p� , ; real.

Using the methods of ref. 4 we have the bounds |S(x)|�c1 |;�c2 | |x0 |+|x� |,
and for |x0 |>1, |1 (x)|�c1 |;�c2 |3 |x0 |+|x� |. Taking into account the explicit
short distance behavior of S(x) and 1 (x), namely S(0)=(s2) +0(;2),
1 (0)=&(s2) &1+0(;), 1 (x=(1, 09 ))=;+0(;2) along with the above
bounds shows that Z( p� , ;) is jointly analytic in p� , ; and that Z( p� , ;)=
(s2)�(2?)d&1+0(;).

To determine the mass spectrum (e-m spectrum at p� =0) in the inter-
val (m, 2m) we consider the states in the subspace generated by ŝ(x� ) ŝ( y� ) 0.
The truncated 4-point function related to this state (after subtracting out
the vacuum contribution) is

D(x1x2 ; x3 x4)=(s(x1) s(x2) s(x3) s(x4)) &(s(x1) s(x2))(s(x3) s(x4))

where xi=(ti , x� i ). By translation invariance D depends only on the dif-
ference variables. We now introduce the newly-devised relative coordinates
(!, ', {) which are the substitute for the center of mass and relative coor-
dinates used in the continuum (see ref. 10). Let !=x2&x1 , '=x4&x3 ,
{=x3&x2 and we denote by p, q, k the respective Fourier transform
variables. Writing !=(!0 , !9 ), etc. it follows that if !0='0=0 D(!, ', {)=
(%(&!9 ), e&H |{0 |eiP9 {� %('� )) where %('� )= ŝ(09 ) ŝ('� ) 0&(0, s� (09 ) ŝ('� ) 0) 0.
A calculation shows, with f : Zd � C a function of space position only and
letting f� ( p� ) and D� ( p, q, k) denote the Fourier transform of f and D
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| d dpd dqf�� ( p� ) f� (q� ) D� ( p, q, k)

=|
�

0
|

Td&1

sinh E
cosh E&cos k0

(2?)3d+2 $(q� &k9 ) d(%( f ), E(E, q� ) %( f ))

(1.2)

where E(E, q� ) is the spectral family associated with H, P9 and T d&1 is the
d&1-dimensional torus, %( f )=�x� f (x� ) %(&x� ), x� # Zd&1. The singularities
in k0 , for k9 fixed, of the left side are points in the e-m spectrum by con-
sidering the right side.

We can now state our results. We assume from now on that (s2)>0,
:=(s4) &3(s2)2>0 and set #=((s4) &3(s2) 2)((s4)&(s2) 2)&1 so
that 0<#<1. We have the

Theorem. For ;>0 and sufficiently small the first point mb in the
mass spectrum above m is isolated and is given by mb=2m&|ln(1&#)|+
0(;). For $>0 sufficiently small mb is the only point in the mass spectrum
in (m, mb+$#).

Remarks.

1. The result generalizes to N vector models replacing : by :N .

2. We expect that the methods of refs. 5 and 6 apply which exclude
mass spectrum in (mb , 2m).

We now sketch the method of proof (which follows closely that of refs.
5 and 6) and give the intuitive picture for the result.

A B�S equation is introduced which in operator form is

D=D0+DKD0 , K=D&1
0 &D&1

where

D0(x1 x2x3x4)=(s(x1) s(x3))(s(x2) s(x4)) +(s(x1) s(x4))(s(x2) s(x3))

K is called the B�S kernel. In terms of kernels in the relative coordinates
(!9 , '� , {) and denoting the Fourier transform in { by 7 we can write the
B�S equation as

D� (!9 , '� , k)=D0(!9 , '� , k)+| D� (!9 , !9 $, k) K� $(!9 $, '� $, k) D� 0('� $, '� , k) d!9 $ d'� $ (1.3)
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where K� $(!9 , '� , k)=K� (&!9 , &'� , k). As we are interested in the mass spec-
trum we set k=k0 , k9 =0 and write D� (k0), etc., considering the operators
as matrix operators in the even subspace of l2(Zd&1).

K� is decomposed as K� =L� +M� where L� is local and ;-independent
and M� is 0(;). L� is obtained by expanding D&1

0 &D&1 in powers of ; and
retaining only the constant term. We call L� the ladder approximation and
it is given by, in relative coordinates,

L� (!9 , '� , k)=
#

2(s2) 2 $(!� ) $('� ), \=#�(2(s2) 2)

The bound on M� is a crucial input and follows from the bound

|M(!9 , '� , {)|�c1 } ;
c2 }

3 |{0 |+1�2 |2{� +!9 +'� |+1�2 |!9 |+1�2 |'� |

|M(09 , 09 , 0)|�c0 |;|

obtained in ref. 11. Using the representation for S(x) we obtain a represen-
tation for D� 0 given by

D� 0(!9 , '� , k)

=2(2?)d&1 |
�

0
|

�

0
|

Td&1

sinh(E+E$) cos p� } !9 cos p� } '�
cosh(E+E$)&cos k0

d_p� (E ) d_p� (E$)

We use the spectral parameter / or ==2m&/ where k0=i/,
0</<2m. Roughly speaking, in terms of the parameter z=&= Eq. (1.3)
corresponds to a lattice Schroedinger operator resolvent equation

(H&z)&1=(H0&z)&1&(H0&z)&1 V(H&z)&1

where H0 is a lattice Laplacian and the potential V is a sum of an attractive
$ potential and a small, non-local but exponentially decaying potential.

For 0<Re =<2m, and = bounded away from zero then for all suf-
ficiently small ;, D� 0(=) and K� (=) D� 0(=) are analytic and bounded; K� (=) D� (=)
is also compact (K� is Hilbert�Schmidt). The analytic Fredholm theorem
(see ref. 12) applies and the left hand side of Eq. (1.2) can be written

( f, Df )=( f, D� 0(1&K� D� 0)&1 f ) (1.4)

except for a discrete set of ='s with ==0 as the only possible accumulation
point. Thus the singularities of Eq. (1.4) can only occur for f satisfying the
eigenvalue equation

K� (=) D� 0(=) f= f (1.5)
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It will be seen that for small ; the ladder approximation L� to K� and
the product of 1-particle contributions to D� 0 are dominant. For the rank
one operator L� D� 0 there is a unique real =, call it =L , for which L� D� 0 f =f
and =L is a 0(;) correction to the ;=0 value =0=&ln(1&#). Taking into
account all contributions to K� D� 0 give an 0(;) correction and an isolated
unique real =, call it =b , which satisfies Eq. (1.5). Thus there is a bound state
mass mb=2m&=b given by mb=&ln(1&#)+0(;).

We now describe the organization of this paper. In Section II we treat
the problem in the ladder approximation. In Section III we treat the full
problem and prove the theorem. The generalization to the N-component
model is given in Section IV and concluding remarks are made in Sec-
tion V. In an appendix we obtain the relative coordinate and Fourier trans-
form form of the B�S equation.

II. LADDER APPROXIMATION

In this section we treat the ladder approximation to the eigenvalue
equation in el2(Zd&1), the even subspace of l2(Zd&1). Throughout ; is
taken to be small. Explicitly, letting f� ( p� ) denote the Fourier transform of
f (!9 ), etc., the Fourier transform of L� D� f =f is

\ |
Td&1

H( p� , =) f� ( p� ) dp� = f� ( p� )

where

H( p� , =)=2(2?)d&1 |
�

0
|

�

0

sinh(E+E$)
cosh(E+E$)&cosh(2m&=)

d_p� (E ) d_p� (E$)

(2.1)

Using the decomposition of d_p� ( } ) we write H(;, =)=H1+H2+H3 where
Hi (;, =)=�Td&1

Hi ( p� , =) dp� with

H1(;, =)=2(2?)d&1 |
Td&1

sinh 2w( p� ) Z( p, ;)2

cosh 2w( p� )&cosh(2m&=)
dp�

H2(;, =)=2(2?)d&1 2 |
�

0
|

Td&1

sinh(E+w) Z( p� , ;)
cosh(E+w)&cosh(2m&=)

d_̂p� (E ) dp�

H3(;, =)=2(2?)d&1 |
�

0
|

�

0
|

Td&1

sinh(E+E$)
cosh(E+E$)&cosh(2m&=)

d_̂p� (E ) d_p� (E$)
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and for f� ( p� )= constant we have the condition \H(;, =)=1. In order to
control H2 and H3 we need a bound on d_̂p� (E ) which is given by

Lemma II.1.

_̂p� (0, �)=|
�

0
d_̂p� (E )=0(;)

Proof. Using the spectral representation for S(x0=0, x� ) and taking
the spatial Fourier transform gives

S(x=0)+ :
|x� |�1

e&iq� } x� S(0, x� )

=(2?)d&1 |
�

0
d_q� (E )=(2?)d&1 Z(q� , ;)+(2?)d&1 |

�

0
d_̂q� (E )

As S(x=0)=(s2) +0(;2), |S(0, x� )|�c1 |;�c2 | |x� | and Z(q� , ;)=(s2)�
(2?)d&1+0(;) the result follows.

In the lemma below we establish some important properties of
the Hi (;, =)'s. Recall that #=:�((s4) &(s2) ), =0=&ln(1&#) and \=
#�(2(s)2)2.

Lemma II.2. There exist $>0, ;0>0 sufficiently small, such that
H1 admits an analytic extension to the region |;|<;0 , |=&=0 |<$# and in
this region

|\H1&1|<2$#, \
�H1

�=
=&

(1&#)
#

[1+0($)]+0(;)

Furthermore H2 and H3 admit analytic extensions in = to |=&=0 |<$#
for 0<;<;0 . In this region |\H i |�ci;, i=2, 3; |\(�H2��=)|�;2#,
|\(�H3 ��=)|�;4#.

Proof. We first consider H1 which we write as

H1=2(2?)d&1 |
Td&1

(1&e&4w) Z( p� , ;)2 dp�
(1&e2(m&w)&=&e&2m&2w+=+e&4w)

Using the fact that w=&ln ;+r(;, p� ) with r(;, p� ) analytic and

m&w=r(;, p� =0)&r(;, p� )=0(;)

1214 Schor and O'Carroll



shows that the exponentials are analytic in ;. Writing ===0+2= we have
1&e&==#&(1&#)(e&2=&1). The first two terms of D, the denominator,
we write as

1&e&=+e&=2(w&m) |
1

0
e&_2(w&m) d_

so that

D=# _1+0 \1&#
# + |2=| e |2=|+

2 |;|
#(1&#)

e |2=|+0(2;4)&
##(1+rd )

Concerning Z( p� , ;)2 we write Z( p� , ;)2=Z2
0+2N where Z0=(s2)�(2?)d&1

and |2N |�c2 |;|. Thus \H1=1+(2(2?)d&1�#) \Z2
0 � (rd�(1+rd )) dp� +

(2(2?)d&1�#) \ � (2N�(1+rd )) dp� . Taking ;0 as the largest |;| satisfying
|;|<$#2�8, |;|<#(1&#)�4, c2 |;|<$#(s2) 2�4 we have the bound |\H1&1|
<2$#. The integrands of H2 and H3 can be bounded in the same way and for
;>0, H2 and H3 are bounded using ��

0 �Td&1
d_̂p� (E ) dp� �c |;|. Similarly the

�Hi ��= are bounded.
We set F=\H, Fi=\Hi , i=1, 2, 3. For :>0 and ; sufficiently small

we now show there is a unique solution of F(;, =)=1 with = near =0 which
we denote by =L(;) or =L . Thus in this approximation there is a bound
state with mass mL=2m&=L . We write, for |2=|<$#, and noting that
F1(0, =)=#�(1&e&=), F1(0, =0)=1,

F(;, =0+2=)&1=F1(0, =0+2=)&F1(0, =0)+R(;, =0+2=)

#2F1(0, =0)+R(;, =0+2=)

where

2F1(0, =0)=&(1&#)(1&e&2=)(1&(1&#) e&2=)&1

R(;, =)=F1(;, =)&F1(0, =)+F2(;, =)+F3(;, =)

Noting that the denominator of 2F1(0, =0) is positive for |2=|<#,
2F1(0, =0)<0(>0) for 2=>0(<0), F1(;, =0+2=) is continuous at ;=0
and the bounds |Fi (;, =0+2=)|�c |;| , i=2, 3 we have, for sufficiently
small ;, F(;, =0+2=)&1<0(>0) for 2=>0(<0). As F(;, =)&1 is
monotone strictly decreasing and continuous in = (actually analytic) there
exists a unique ===L such that F(;, =L)&1=0.

Let ===0+z, |z|<$#, and f;(z)#F(;, =0+z)&1. From the z analy-
ticity of f;(z) we have a Cauchy integral representation for the solution zL

1215Transfer Matrix Spectrum



of f;(zL)=0 given by zL=(2?i)&1 �C ((z df;(z)�dz)�f;(z)) dz where C is a
circle, centered at z=0 and of radius slightly smaller than $#. An analysis
of the integral gives the bound zL=0(;) so the bound state mass is given
by, with =L==0+zL , 2m&=L=2m&|ln(1&#)|+0(;).

III. EXISTENCE OF A BOUND STATE

Here we prove the theorem of Section I. In el2(Zd&1) we consider the
family of operators T;(+, =)#L� D� 0++M� $D� 0 , ;M� $=M� , for complex +,
|+|<+0 , +0 sufficiently small, and for +=;, T;(;, =)=K� D� 0 . +M� $D� 0 will be
treated as a small perturbation of L� D� 0 . We want to apply the analytic
Fredholm theorem to K� D� 0 . Now L� and M� are compact and analytic as L�
is finite range and M� is Hilbert�Schmidt. Also |L� |=\ and |M� |<c; so we
need a bound on |D� 0 |. The operator D� 0 on the Fourier transform space is
the multiplication operator H( p� , =) of Eq. (2.1) and with our convention
|D� 0 |=(2?)d&1 supp� =Td&1

|H( p� , =)|. First we give some bounds on the
Hi ( p� , =)'s. We have

Lemma III.1. For ; sufficiently small

(a) and for real =, 0<=�2m, i=1, 2, 3 Hi ( p� , =)>0,
(�Hi ��=)(p� , =)<0;

(b) and for 0<Re =#=r�2m, i=1, 2, 3 |H i ( p� , =)|�H i ( p� , =r)�0;

(c) and for =0&$#<Re =�=0+ln 2

(i)

H1( p� , =)=
2

(2?)d&1

(s2) 2

1&e&= [1+0($)]+0(;)

�H1

�=
( p� , =)=

&2(s2) 2

(2?)d&1

e&=

(1&e&=)2 [1+0($)]+0(;)

(ii)

H2( p� , =)=2(s2) 2 | d_̂p� (E )(1+0(;))=0(;)

�H2

�=
(;, =)=2(s2) 0(;2) e&= | d_̂p� (E )
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(iii)

H3( p� , =)=2(2?)d&1 \| d_̂p� (E )+
2

(1+0(;))=0(;2)

�H3

�=
( p� , =)=2(2?)d&1 0(;4) e&= \| d_̂p� (E )+

2

Proof. (a) follows by calculation. (b) write for /, � real cosh(/+i�).
Then, with u#E+E$ and D denoting the denominator,

|D|=|cosh u&cosh(/+i�)|�cosh u&max
�

|cosh(/+i�)|

But |cosh(/+i�)|2=cosh2 /&sin2 � so |D|�cosh u&cosh /=D. (c)
follows as in the proof of Lemma II.

We have

Lemma III.2. For ===0+2=, 2==ln 2 and ; sufficiently small
|K� (=) D� 0(=)|<1.

Proof. We have |K� D� 0 |=|L� D� 0+M� D� 0 |� |L� | |D� 0 |+|M� | |D� 0 |, with
|L� |=\ and |M� |�c;. For |D� 0 | the contributions of H2 and H3 are of order
; from Lemma II.1c. For H1 we have (2?)d&1 supp� |H1( p� , =0+2=)|�
2(s2)(1&e&=0&2=)&1+0(;). But

(1&e&=0&2=)&1=(#+(1&#)(1&e&2=))&1=(#+(1&#)�2)&1

so that |D� 0 |=2(s2)(#+(1&#)�2)&1+0(;) and

|L� D� 0 |�|L� | |D� 0 |�#(#+(1&#)�2)&1+0(;)<1

Corollary. For 2m�Re =>=0+2=, 2==ln 2 and ; sufficiently
small |K� (=) D� 0(=)|<1.

Proof. Follows from Lemma III.2 and Lemma III.1 a) and b).

From Lemma III.1c, Lemma III.2 and the corollary (1&K� 0D� 0)&1

exists in =0&$#<Re =<=0+ln 2.
We now return to the analysis of the operator T;(+, =) which we treat

as a perturbation of T;(0, =L) writing T;(+, =)=T;(0, =L)+$T;(+, =) where
$T;(+, =)=T;(+, =)&T;(0, =)+T;(0, =)&T;(0, =L). Concerning T;(0, =L)
we have (denoting the spectrum of an operator B by _(B))

Lemma III.3. For ; sufficiently small _(T;(0, =L))/[0, 1].
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Proof. Decomposing f� ( p� )= f� 0+ f� 1( p� ) where f� 0 is the constant
function and f� 1( p� ) is orthogonal to the constants we can write, letting
A0#T;(0, =L),

(g~ , T;(0, =L) f� )=(g~ 0 , g~ 1) \1
0

A01

0 +\ f� 0
f� 1+

where (g~ 0 , A01 f� 1)= g~� 0\ �Td&1
H( p� , =L) f� 1( p� ) dp� . For ;=0 the product of

the one-particle contributions is zero. Using the maximum modulus
theorem in ; for |;|<;0 and Lemma III.1c for the other contributions
gives the bound |A01|<c$;. The inverse (A0&w)&1 is given by (A0&w)&1

=( (1&w)&1

0
w&1(1&w)&1 A01

&w&1 ) from which we see the spectrum is [0, 1].
For the spectrum of T;(+, =) we have

Lemma III.4. For ;, +0 , $ sufficiently small and for all +, = such
that |+|<+0 , |=&=0 |<2$#,

_(T;(+, =))/[w : |w&1|< 1
4 or |w|< 1

4]

Proof. We have, from the proof of Lemma III.3, for |w|> 1
4 and

|w&1|> 1
4 ,

|(T;(0, =L)&w)&1|�max[ |w|&1, |1&w|&1, |w| &1 |1&w|&1 |A01|]�16

Using the Taylor expansion in = and Lemma III.1c we have

|L� D0(;, =)&L� D� 0(;, =L)|�
(1&#)

#
|=&=L |+2#;2 |=&=L |+0(;) |=&=L |

and since |D� 0 |<((s2)2�#)(1+2$)+0(;) and |M$|<c$, |+M� $D� 0(;, =)|�
c2 |+|. Thus |$T;(+, =)|�((1&#)�#) |=&=L |+2#;2 |=&=L |+2 |+| c so that
for ; sufficiently small the Neumann series converges for (T;(+, =)&w)&1.

Thus we have established the

Corollary. For ;, $ sufficiently small and for all +, = such that
|+|<;, |=&=L |<2$# the spectrum of T;(+, =) consists of

(a) a simple eigenvalue :;(+, =), |:;(+, =)&1|< 1
4 analytic in +, = and

real for +, = real.

(b) Other spectrum in |w|< 1
4 .

Proof. (a) follows from analytic perturbation theory (see ref. 13) and
also the multiplicity is one. For +, = real T;(+, =) commutes with complex
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conjugation thus both :;(+, =) and :� ;(+, =) are eigenvalues. As the multi-
plicity is one :;(+, =) is real.

Exploiting the +, = analyticity we now use Cauchy estimates to control
derivatives and establish the existence of =b such that :;(;, =b)=1. We have
the

Theorem III.1. For ;, $ sufficiently small and for all +, |+|<2;
there is a unique =1(+), |=1(+)&=0 |�$3#, such that :;(+, =1(+))=1.

Proof. For + and = Cauchy estimates we use the circles of radii
|+|=+0 and |=&=0 |=2$#, and take the +, = variables in the region |+|<2;,
|=&=0 |<$3#. By Cauchy estimates |�+:;(+, =)|<2�+0 , |�+ �=:;(+, =)|<
(2�+0)(1�$#) so that by Taylor expanding in + and by Cauchy estimates
|:;(+, =)&:;(0, =)|�4;�+0 . Taking ===L(;) we have |:;(+, =L)&1|�
4;�+0 . For real =

�=:;(+, =)=�=:;(0, =)+|
+

0
�$+ �=:;(+$, =) d+$ (3.1)

where

�=:;(0, =)�&
(1&#)

#
+0(2;2#) (3.2)

and the 2nd term of Eq. (3.1) is bounded by 8;�$#+2
0 . Using Eq. (3.2) we

have, for sufficiently small ;, �=:;(+, =)�&((1&#)�2#). Thus

:;(+, =0+$3#)=:;(+, =0)+�= :;(+, =0) #$3+|
=

0
d=$ |

=$

0
d="

�2

�="2 :;(+, =")

�1+0(;)&
(1&#)

2
$3+0($4)

and :;(+, =0+$3#)<1 for ; sufficiently small. Similarly :;(+, =0&$3#)>1.
Taking +=; and =1(;)#=b in Theorem III.1 gives us a bound state

mass of 2m&=b=2m&|ln(1&#)|+0(;) and completes the proof of the
theorem.

IV. N-COMPONENT VECTOR MODEL

We now consider N-component vector models with even, rotationally
invariant (O(N )) ssd and interaction action. The spin variable at site x # Zd
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is denoted by s(x) # RN with components si (x) # R, i=1, 2,..., N and the
time zero operators are denoted by ŝ(x� ), x� # Zd&1. The one-particle states
are generated by vectors of the form ŝk(x� ) 0. The two-particle states are
generated by ŝk(x� ) ŝl( y� ) 0 and these states can be decomposed into the
rotationally invariant state ŝ(x� ) } ŝ( y� ) 0 and the traceless states
(ŝk(x� ) ŝl( y� )&(1�N) ŝ(x� ) } ŝ( y� ) $kl) 0. The traceless states can further be
decomposed into the symmetric and anti-symmetric states (ŝk(x� ) ŝl( y� )+
ŝl(x� ) ŝk( y� )&(2�N) ŝ(x� ) } ŝ( y� )) 0 and (ŝk(x� ) ŝl( y� )&ŝl(x� ) ŝk( y� )) 0, respec-
tively. We only consider the rotationally invariant state. Associated with
this state (after subtracting out the vacuum contribution) is the cf

D(x1x2 x3x4)=(s(x1) } s(x2) s(x3) } s(x4)) &(s(x1) } s(x2))(s(x3) } s(x4))

and the F�K formula and spectral representation equation remain valid. In
the B�S eq. D=D0+DKD0 we take

ND0(x1x2x3 x4)

=(s(x1) } s(x3))(s(x2) } s(x4)) +(s(x1) } s(x4))(s(x2) } s(x3))

As before D and D0 are decomposed into the diagonal and non-diagonal
part, the non-diagonal parts are of order ;. We find

Dd (x1 x2x3x4)=N[(s4
1) &N(s2

1)+(N&1)(s2
1 s2

2)]

_$(x3&x1) $(x4&x2) $(x2&x1)

+N(s2
1) 2 $(x3&x1) $(x4&x2)(1&$(x2&x1))+0(;)

D0d (x1 x2 x3x4)=2N(s 2
1) 2 $(x3&x1) $(x4&x2) $(x2&x1)

+N(s 2
1) 2 $(x3&x1) $(x4&x2)(1&$(x2&x1))+0(;)

and for K=D&1
0 &D&1

K=D&1
0d &D&1

d +0(;)

=
1
N _ (s4

1)&N(s2
1)+(N&1(s2

1s2
2)&2(s2

1) 2

2(s2
1) 2 ((s4

1) &N(s2
1) 2+(N&1)(s2

1s2
2) 2)&

_$(x3&x1) $(x4&x2) $(x2&x1)+(0;)

Dropping the 0(;) terms, rewriting in terms of s and taking the Fourier
transform gives L� ( p� , q� , k)=:N where :N is given in the introduction. The
rest of the analysis goes through as in the previous section.
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V. CONCLUDING REMARKS

We have found a simple criteria for the existence of bound states based
on the sign of : for small ;. The question arises as to the existence and
number of bound states for large values of ;. Also there is the question of
whether or not the result generalizes to the case of non-even ssd. For
example, if : is calculated using zero average fields does the sign of : still
determine the presence or absence of bound states. The existence of weakly
bound, bound states in lattice gauge and gauge-matter models (strongly
bound, bound states are present) is also an open question and the methods
developed here open the way to treat these problems.

APPENDIX. LATTICE B�S EQUATION

Here we deduce a composition of kernel form for the Fourier trans-
form of the lattice B�S eq. We use the relative and conjugate variables

!=x2&x1 , p; '=x4&x3 , q; {=x3&x2 , k

with !0=0, '0=0 and an integral notation for lattice sums. The B�S eq.
is, with x10=x20 , x30=x40

D(x1x2 x3x4)=D0(x1 x2x3 x4)+| dy1 dy2 dy3 dy4 $( y10& y20) $( y30& y40)

_D(x1x2 y1 y2)K( y1 y2 y3 y4) D0( y3 y4x3 x4) (A.1)

All kernels are assumed to be translationally invariant. In terms of the
relative variables !, ', { we write, using a bar notation for the function of
the relative variables,

D� (!, ', {)=D(0, x2&x1=!, x3&x1=!+{, x4&x1=!+'+{)

etc. The kernels D, D0 and consequently also K are invariant under the
substitutions

(x1x2 x3x4) � (x2x1x3x4) (A.2a)

(x1x2 x3x4) � (x1x2x4x3) (A.2b)

which imply

K� (!, ', {)=K� (&!, ', {+!) (A.3a)

K� (!, ', {)=K� (!, &', {+') (A.3b)
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We introduce the variables !$, '$, {$, {" where

!$=y2& y1 (A.4a)

'$=y4& y3 (A.4b)

{$=y1&x2 (A.4c)

{"=x3& y4 (A.4d)

Then

y1={$+x2 (A.5a)

y2=!$+ y1=!$+{$+x2 (A.5b)

y4=x3&{" (A.5c)

y3=y4&'$=x3&{"&'$ (A.5d)

We have

D(x1x2y1 y2)=D� (!, !$, {$) (A.6a)

D0( y3y4x3 x4)=D� 0('$, ', {") (A.6b)

K( y1y2y3 y4)=K� (!$, '$, {&{$&{"&!$&'$)

=K� (&!$, &'$, {&{$&{") (A.6c)

where for the 1st equality of (A6c) we use Eq. (A.5), i.e.,

y3& y2=(x3&{"&'$)&(!$+{$+x2)={&{$&{"&!$&'$

and for the 2nd we use (A.3). Thus the B�S equation becomes

D� (!9 , '� , {)=D� 0(!9 , '� , {)+| d!9 $ d'� $ d{$ d{" D� (!9 , !9 $, {$)

K� (&!9 $, &'� $, {&{$&{") D� 0('� $, '� , {")

Letting 7 denote the Fourier transform in the { coordinate only and
dropping the bars we have

D� (!9 , '� , k)=D� 0(!9 , '� , k)+| d!9 $ d'� $ D� (!� , !9 $, k) K� (&!$, &'� $, k) D� 0('� $, '� , k)
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